Sebagai cabang ilmu baru di bidang komputer cukup banyak penerapan yang dapat dilakukann oleh Data Mining. Apalagi ditunjang ke-kaya-an dan ke-anekaragam-an berbagai bidang ilmu (artificial intelligence, database, statistik, pemodelan matematika, pengolahan citra dsb.) membuat penerapan data mining menjadi makin luas. Di bidang apa saja penerapan data mining dapat dilakukan? Artikel singkat ini berusaha memberikan jawabannya. Analisa Pasar dan Manajemen Untuk analisa pasar, banyak sekali sumber data yang dapat digunakan seperti transaksi kartu kredit, kartu anggota club tertentu, kupon diskon, keluhan pembeli, ditambah dengan studi tentang gaya hidup publik. Beberapa solusi yang bisa diselesaikan dengan data mining diantaranya: • Menembak target pasar Data mining dapat melakukan pengelompokan (clustering) dari model-model pembeli dan melakukan klasifikasi terhadap setiap pembeli sesuai dengan karakteristik yang diinginkan seperti kesukaan yang sama, tingkat penghasilan yang sama, kebiasaan membeli dan karakteristik lainnya. • Melihat pola beli pemakai dari waktu ke waktu Data mining dapat digunakan untuk melihat pola beli seseorang dari waktu ke waktu. Sebagai contoh, ketika seseorang menikah bisa saja dia kemudian memutuskan pindah dari single account ke joint account (rekening bersama) dan kemudian setelah itu pola beli-nya berbeda dengan ketika dia masih bujangan. • Cross-Market Analysis Kita dapat memanfaatkan data mining untuk melihat hubungan antara penjualan satu produk dengan produk lainnya. Berikut ini saya sajikan beberapa contoh: o Cari pola penjualan Coca Cola sedemikian rupa sehingga kita dapat mengetahui barang apa sajakah yang harus kita sediakan untuk meningkatkan penjualan Coca Cola? o Cari pola penjualan IndoMie sedemikian rupa sehingga kita dapat mengetahui barang apa saja yang juga dibeli oleh pembeli IndoMie. Dengan demikian kita bisa mengetahui dampak jika kita tidak lagi menjual IndoMie. o Cari pola penjualan • Profil Customer Data mining dapat membantu Anda untuk melihat profil customer/pembeli/nasabah sehingga kita dapat mengetahui kelompok customer tertentu suka membeli produk apa saja. • Identifikasi Kebutuhan Customer Anda dapat mengidentifikasi produk-produk apa saja yang terbaik untuk tiap kelompok customer dan menyusun faktor-faktor apa saja yang kira-kira dapat menarik customer baru untuk bergabung/membeli. • Menilai Loyalitas Customer VISA International Spanyol menggunakan data mining untuk melihat kesuksesan program-program customer loyalty mereka. Anda bisa lihat di www.visa.es/ingles/info/300300.html • Informasi Summary Anda juga dapat memanfaatkan data mining untuk membuat laporan summary yang bersifat multi-dimensi dan dilengkapi dengan informasi statistik lainnya. Analisa Perusahaan dan Manajemen Resiko • Perencanaan Keuangan dan Evaluasi Aset Data Mining dapat membantu Anda untuk melakukan analisis dan prediksi cash flow serta melakukan contingent claim analysis untuk mengevaluasi aset. Selain itu Anda juga dapat menggunakannya untuk analisis trend. • Perencanaan Sumber Daya (Resource Planning) Dengan melihat informasi ringkas (summary) serta pola pembelanjaan dan pemasukan dari masing-masing resource, Anda dapat memanfaatkannya untuk melakukan resource planning. • Persaingan (Competition) o Sekarang ini banyak perusahaan yang berupaya untuk dapat melakukan competitive intelligence. Data Mining dapat membantu Anda untuk memonitor pesaing-pesaing Anda dan melihat market direction mereka. o Anda juga dapat melakukan pengelompokan customer Anda dan memberikan variasi harga/layanan/bonus untuk masing-masing grup. o Menyusun strategi penetapan harga di pasar yang sangat kompetitif. Hal ini diterapkan oleh perusahaan minyak REPSOL di Spanyol dalam menetapkan harga jual gas di pasaran. Telekomunikasi Sebuah perusahaan telekomunikasi menerapkan data mining untuk melihat dari jutaan transaksi yang masuk, transaksi mana sajakah yang masih harus ditangani secara manual (dilayani oleh orang). Tujuannya tidak lain adalah untuk menambah layanan otomatis khusus untuk transaksi-transaksi yang masih dilayani secara manual. Dengan demikian jumlah operator penerima transaksi manual tetap bisa ditekan minimal. Keuangan Financial Crimes Enforcement Network di Amerika Serikat baru-baru ini menggunakan data mining untuk me-nambang trilyunan dari berbagai subyek seperti property, rekening bank dan transaksi keuangan lainnya untuk mendeteksi transaksi-transaksi keuangan yang mencurigakan (seperti money laundry). Mereka menyatakan bahwa hal tersebut akan susah dilakukan jika menggunakan analisis standar. Anda bisa lihat di www.senate.gov/~appropriations/treasury/testimony/sloan.htm. Mungkin sudah saatnya juga Badan Pemeriksa Keuangan Republik Indonesia menggunakan teknologi ini untuk mendeteksi aliran dana BLBI. Asuransi Australian Health Insurance Commision menggunakan data mining untuk mengidentifikasi layanan kesehatan yang sebenarnya tidak perlu tetapi tetap dilakukan oleh peserta asuransi. Hasilnya? Mereka berhasil menghemat satu juta dollar per tahunnya. Anda bisa lihat di www.informationtimes.com.au/data-sum.htm. Tentu saja ini tidak hanya bisa diterapkan untuk asuransi kesehatan, tetapi juga untuk berbagai jenis asuransi lainnya. Olah Raga IBM Advanced Scout menggunakan data mining untuk menganalisis statistik permainan NBA (jumlah shots blocked, assists dan fouls) dalam rangka mencapai keunggulan bersaing (competitive advantage) untuk tim New York Knicks dan Miami Heat. Astronomi Jet Propulsion Laboratory (JPL) di Pasadena, California dan Palomar Observatory berhasil menemukan 22 quasar dengan bantuan data mining. Hal ini merupakan salah satu kesuksesan penerapan data mining di bidang astronomi dan ilmu ruang angkasa. Anda bisa lihat di www-aig.jpl.nasa.gov/public/mls/news/SKICAT-PR12-95.html. Internet Web Surf-Aid IBM Surf-Aid menggunakan algoritma data mining untuk mendata akses halaman Web khususnya yang berkaitan dengan pemasaran guna melihat prilaku dan minat customer serta melihat ke-efektif-an pemasaran melalui Web. Dengan melihat beberapa aplikasi yang telah disebutkan di atas, terlihat sekali potensi besar dari penerapan Data Mining di berbagai bidang. Bahkan beberapa pihak berani menyatakan bahwa Data Mining merupakan salah satu aktifitas di bidang perangkat lunak yang dapat memberikan ROI (return on investment) yang tinggi. Namun demikian, perlu diingat bahwa Data Mining hanya melihat keteraturan atau pola dari sejarah, tetapi tetap saja sejarah tidak sama dengan masa datang. Contoh: jika orang terlalu banyak minum Coca Cola bukan berarti dia pasti akan kegemukan, jika orang terlalu banyak merokok bukan berarti dia pasti akan kena kanker paru-paru atau mati muda. Bagaimanapun juga data mining tetaplah hanya alat bantu yang dapat membantu manusia untuk melihat pola, menganalisis trend dsb. dalam rangka mempercepat pembuatan keputusan. Kapankah data mining akan banyak digunakan di Indonesia? Kita tunggu saja.
NB: Aplikasinya Silahkan Cari Disini
http://www.estard.com/
http://www.statsoft.com/products/data-mining-solutions/
http://www.crackedsoftwares.com
www.webmaster.com
sumber : http://bagaspoenya.wordpress.com/2009/02/21/data-mining/
Posting Komentar